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ABSTRACT

Existence of a max imal solution is proved for a differential equat ion

satisfying a one—sided variant of Caratheodory’s condition. The maximal

solution is shown to dominate all solutions of a very general di f ferential

inequality. Also a best—possible condition is proved for the dependence of

the maximal solution on the initial data and on the right-hand side of the

equation.
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SIGNIFICANCE AND EXPLANATION

Many applied problems in fluid mechanics can be modelled by nonlinear

evolution equations of the form

(E) u’(t) = A(t,u(t)) + B(t ,u ( t ) )  + g(t)

Here u(t) = u(t,x) = u(t,x1,x2,x3) is a vector—valued function of time and

space, which represents the state of the system at time t. The operators

H A and B are , typically , nonlinear partial differential operators in the

spatial variables, and g(t) = g(t,x) is a given forcing term.

Equation (E) usually is so complicated that there is no hope of finding

explicit solutions in closed form. Thus it is important to obtain

qualitative, and whenever possible , quantitative information about the
- solution u of (E). This often can be accomplished by showing that u is

the limit of an approximating sequence of solutions u~ of simpler equations

(Es). For such an analysis (which will be given elsewhere) some crude

estimates of l l u ( t ) f l  are needed , where U II is a Banach space norm or some

other measurement of how large u(t) = u(t,x) is and how much u(t,x) varies

when x varies. Such estimates often can be obtained from a differential

• 
inequality of the form

!~u(t) II < f(t,Itu(t) II)

That inecuality implies PIu(t)II < z(t), where z(t) is the maximal (i.e.

largest) solution of the scalar ordinary differential equation

z’(t) f(t,z(t)) (t > 0)

z(0) = Uu(0)

In this paper we investigate the properties of maximal solutions z(t),

especially those properties relevant to the limiting behavior of (E). In

particular , we determine in what sense the assumption f + f implies

z ÷ z , under hypotheses on f which will make it possible to apply our
results to (E).

The responsibility for the wording and views expressed in this descriptive
summ ary lies with MRC, and not with the author of this report.
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ONE-SIDED CON’IINUOUS DEPENDENCE OF ~lAXIMAL SOLJT I i~~ —~ ~~ / >‘

Eric Schechter

1. Introduction

j In this paper we consider the solutions of initial value problerns of th e  fo rm

(1.1) x’(t) = f ( t ,x(t)) (0  < t < T )  ,

x( 0) = w

where T is some positive number or . We assume that w > 0 and that

f R4 
X + R is a function such that f(t ,y) is locally

(1.2) integrable in t for each fixed y,  and increas ing an d

right—continuous in y for almost every fixed t

These conditions do not determine x(t) uniquely. (For instance , consider th~e equatin’-

x’(t) I~ T1 with x(0) 0.) In this paper we prove the existence of a maximal

solution Xmax (t) of (1.1). We show that xmax not only dominates all solutions of

(1.1), but also all generalized solutions (in a sense made precise in Section 2) of (1 .1

and of the more general initial value probleS

v’(t) < f(t,v(t)) (0  < t < T)

(1.3) v(t) > 0

v ( 0 )  w

Also we obtain a best—possible result about the dependence of on w and ~~.

The existence of maximal solutions of (1.1) can be shown by a variant of ~ iliroo’- ’ e

methods; see [3) .  However , we shall obtain the existence of maximal solutions as a

byproduct of our proofs of other results.

Theorem III in this paper is analogous to , and may be motivated by , the  folln~~ ~o

simpler result: Let T be a positive number. Let A he e directed set. Let

a ~ A) be measurable functions from [0,T3 X R
n into R° sa tis f y in o

Sponsored by the tJr~ited States Army under O,ntract l~b. DAAG2O—75—C-0fl24. T~’is
material is based upon work supported by the National Science Foundat~ c~n unde r
Grant ~~~. MCS7~—09525.
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j
f~,(t,x)  — f ( t ,y) I < K(t) Ix —

(1.4) f
a
(t
~~~ 

— f
a ( t

~~~
H < K (tflx — y~

• 
If ,,(t,x) I < M(t), 

~ a ( t
~~~I < M(t)

for some f ixed X,M C L
1
[0 ,T3. Then

t t
liin f f(s ,y )ds f f~ (s ,y)ds

0 0

for every t in [0,T] and y in Rn if and only if for every p in tO, T) and w

in Rn , the unique solution of

x (t) = f
a
(t
~~~

t
~~ 

(p < t < T)

x ( p ) w

converges (in the sense of nets , as a increases in A) to the unique solution of

x’(t) = f(t ,x(t)) (p < t < T)

x ( p )  = w

A variant of the above theorem was proved in [1]; however , the methods in [13 rely on the

Lipschitz condition in (1.4) and do not generalize to cover the case described in (1.2).

T~ e above theorem and an assortment of generalizations can also be proved using the methods

[23 .

One reason for interest in problem (1.1), (1.2) is the following: Let (U, fl ~) be

~~~~ Banach space of functions, and let ACt) be some time—dependent nonlinear partial

~ifferential operator, consider the initial value problem

u’(t) = A(t)u (t) (t > 0)

u(0) =

For many purposes it is important to have estimates on IIu (t)JP . In many applications

ul t) sa ti sf ies some condition such as

IIu(t) < f(t , IIu( t) II)

~ h et e  f satisfies ( 1 . 2 ) .  Let w = (uCO ) C; then flu(t) < x (t) . Theorems II and III

~7 this paper will be used in [2) for estimates of this sort.

—2—



2. Statement of results

Notation.

Let [0,+~’). A function g is increasing if y >  z implies 9(y) > g(z), and

right—continuous if y + y implies g(y ) + g(y). A function x : [0,T) + R is

nonextendable (or T is final for x) if either T = = or x(t) + = as t increases

to T.

A function x : [O,T) + R is a solution of (1.1) if x is absolutely continuous on

compact subsets of [0,T), satisfies the differential equation almost everywhere in

[0, T), and satisfies the initial condition. Note that since w and f are

nonnegative , x(t) must be nonnegative and increasing.

Theorem I.

Assum e f satisfies (1.2) and w is some nonnegative number.

Then (1.1) has at least one solution for some T > 0. Every solution x (t) of (1.1)

can be continued to a nonextendable solution x : [0,T ) + R
X +

~mong the nonextendable solutions of (1.1) there exists a maximal solution

x [0,T ) ~ B • That is: x is a rionextendable solution; and if x is any other
S r + m

nonextendahle solution , then 0 < T ( T and x (t )  < x ( t )  for all t in [0 ,T ) .
m —  X — m m

Clearly, the maximal solution is unique , since any two maximal solutions must dominate

each other.

Theorem I I ,  below , concerns solutions of (1.3) in a generalized sense. The

differential inequality v’(r) < f(r ,v (r)) is not suitable for some purposes , e.g. when

v is not differentiable . So we shall replace that inequality with the following more

general condition :

—3 —
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t
either ( i) f f ( s ,v ( s ) ) d s  > 0 as t + r, and

r
t

h i s sup
t+r

[v(t)_v (rfl/f f(s,v (s))ds < 1

(2.1) 
r

r+ C
or (ii) f f(s,v(s))ds 0 for some C > 0

and v(.) ~ v(r) on tr ,r + C)

• The following notations will he used in Theorem II: f is a function satisfyin g

(1.2), and v : [0,1) + R
+ 

is some function . Hence (by Theorem I) for each r in

[0,1) there exists a unique maximal solution x : [p,T )  + of

I x’(t) = f(t,x (t)) (p < t < T )
(2.2) 

p p — p

~ x (p) = v ( p )

with final time T1,.

For motivation note that if v is a nonextendable solution of (1.1) then v

satisfies condition (2.3) of Theorem 11, and hence also the other conditions.

Theorem It.

Let f be a function satisfying (1.2). Let v : [0,T)  + R~ be a measurable fuoctior-.

which is bounded on compact subsets of [0,T). Assume I > 0, and either T = ~ or

him sup 
+1
v (t) = . Define maximal solutions x and final times T as in (2 .21 .

Then conditions (2.3), (2.4), and (2.5) are equivalent :

t
( 2 .3 )  v ( t )  — v(r) < f f (s ,v ( s ) ) d s  whenever 0 < r < t < T

r

f v(t) < lit, inf v (r) for every t in (0,1),

(2.4) r+t

and (2.1) holds for every r in [0 ,1)

For every p in [0,T), I < I and v(t) < x (t)

(2.5) 
p p

for all t in [~~~T~ )

—4-
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Moreover , if (2.3), (2.4), (2.c) hole , then also

(2.6) v has hounded variation on (0 ,t3 for every t in ‘n ,T ) ,  and

(2.7) v is nonextendable , i.e. either I = = or lit, i nf ~~~~v) t )  = =

Theorem III is stated in the terminology of nets. The reader may read ‘ seguence’ ~-.r

“net” and let A = {positive integers) if he so chooses. The additional cenerahity of

nets is needed for an application in [2 ] .

The following notations will be used in Theorem III: f and (f a C A) are

functions satisfying (1.2); w
= 

and 
~
W
a 
: a C A } are nonneqative numbers; p is a

nonnegative number. Hence we can define the maximal solutions x and xa of the init~ a1

value problems

x (t) = f(t ,x (t)) (p < t < T
=
)

x,,(p) = w

(2.8) and

x’( t )  = f (t,x (t)) (p < t < I )a a a — a

X
a

( P ) = W
a

- with final times I and Ta

The him inf’s and him sup ’s in the theorem are with respect to the ordering of A .

Theorem III.

Let A be a directed set. Let f and 
~~a 

: a C A) be functions satisfyinct

(1 .2 ) .  Define maximal solutions x , x and final times I , 1 as in (2.0). Then t~~ea = a

following conditions (2.9), (2.10), and (2.11) are equivalent :

(2.9) lint sup I f
a
(5
~
Y)d5 < f f ( s ,y)ds for every choice of y 0 and t ~ r ~

—5— 
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for every choice of nonnegative numbers p and w , if

(2.10) = w
= 

for all a , then him inf T
a 

> I and

him sup x (t) < x (t) for all t in [p,T )

for every choice of nonnegative numbers p, w , and

(2.11) (w : a C A}, if u r n  sup W ~ w , then him inf Ta 
> I and

him sup X
a
(t) < x

=
(t) for all t in [p,T )  .

In particular , the implication (2.9) => (2.11) tells us that maximal solutions are

increasing and right—continuous , in the sense that if

t t

~ I 
f ( s ,y)ds for all y > 0 and t ) r > o

an d w ~ w , then I + T and x (t) + x (t) for every t in (p,I,,).

The reader may feel uneasy about condition (2.9), and may prefer the simpler and more

f ami l i a r  condition

(2.12) him sup 
~~~~~~~ 

~ f
=~~ ’~~ 

for all $ > 0, y > 0

In fact, (2 .12 )  implies (2 .9 ) ,  at least for L1—dominated sequences, by Fatoo’S Lemma. The

reverse implication does not hold. For instance, take A = ~positive integers), and

= 1 + sin(as), f ( s ,y) = 1. Then (2.9) holds but (2.12) does not. One purpose of

Theorem III is to show that condition (2.9) is in some sense natural, and best possible.

1~
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3. ?a~xiliary Constructions

The proofs of the theorems wi l l  be based partly on some technical lemmas ctiven below.

Lemma 1.

Let v : [0,T) * be a measurable function which is bounded on compact subsets of

[0,T). Assume that T > 0, and that either I = = or him sup~~1
v (t )  = . Let

e x R~ + R~ be a function Satisfying (1.2). Assume that

t
(3.1) v (t) — v (r) < f e(s,v(s))ds whenever 0 < r <  t ( T

r

Then :

Ci) v(t) < him inf
+~
v(r) for every t in (0,T) .

(ii) v(r) > him sup
~ + 

v (t) for every r in [0,1)
r 

b
(iii) If a C [0,1) and b r (a ,) and h > 0 satisfy f e(s,v(a) + h)ds < h, then

t a
b < I and v(t) < v(a) + f e(s,v(a) + h)ds < v (a) + h for all t in [a ,bJ .

a
(iv) v is nonextendabhe , i.e. I = = or him inf

~+T
v(t) =

Note that in particular any nonextendable solution v of v’(t) = e(t,v(t))

satisfies the hypotheses of lemma 1.

Proof of Lemma 1.

Since v(s) is bounded on any compact subset of [0,?), e(s,v(s)) is integrable

there. So (i) and (ii) follow immediately front (3.1).

Let a,b ,h satisfy the hypotheses of (iii). By (ii), since v(a) < v(a) + h, there

is some c in (a ,T] such that v(.) < v(a) + h on [a,c). thoose the largest such

° . If c < T, then (again by (ii)) v(c) > v(a) + h. If c = I, then

lLm sup v(t) < v (a) + h < , so we must have T =

— 7 —
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For any t in [a ,b] fl [a ,c] fl [a,T), compute

t t
v (t) < v(a) + f e(s,v(s))ds < v(a) + f e(s,v ( a )  + h)ds

a a

b
< v (a) + f e(s,v(a) + h)ds v(a) + h

a

In particular , if c < I and c < b, then v(a) + h < v(c) < v (a) + Ci , a

contradiction. So either c = I = (in which case b < = = c = I ) ,  or c < I (in which

case b < c). In either case we obtain b < c < I. Hence
t

t £ [a ,b) ==> t ~ (a ,b) 1~ [a ,c) fl ja,T) ==> v(t) < v(a) + 5 e(s,v(a) + h)ds < v(a) + h.
a

This proves (iii).

To prove (iv), suppose P and M S him inf
~ fTv(t) are both finite. thoose some

£ > 0 small enough so that e(s,M + 2)ds < 1. Then choose some a in (T — C ,T)

such that v(a) < M + 1. Them e(s,v(al + 1.)ds < 
~~~~~~ 

e(s,M + 2)ds < i. ~,ppiy (iii,

with h — 1 and b = I. This proves I < ~~, a contradiction. Hence (iv) holds. This

completes the proof of the lemma.

Let ([y]) be the greatest integer less than or equal to y. For each positive

integer n, let h (y) f’
~([[2~y]] + 1). Then h~(y) is the first multiple of

2—n after y. Hence y < h~~1
(y) < h (y) < y + 2

n and h
n (Y) 

+ y as n + =.

Lemma 2.

Let f satisfy (1.2), and let w be a nonnegative number. Fix some positive

integer n. Then there exists a unique nonexteridable solution : [O~ I~~) + R+ of the

initial value problem

— 8 —
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x’ (t) = f(t,h Cx (t))) + (0 ( t < T C ,n n n — n
—n+1 —n n

x ( 0 )  = h (w) + 2 = 2 ([(2 w]3 + 3)
n n

This solution has the following further properties:

Let i i(n) = [ [ 2 n
W)] + 3. Then for every integer j  > i there exists a u~~io~~~

number t~ (depending on n) such that x ( t .) = 2
n~ These numbers satisfy

0 = t , < t . < t . < ...<T
1 i-f l i+2 n

and t . + I as j  + =.
j  n

Furthermore :

Suppose v : [0 ,T) + and e : R X R
÷ 

+ satisfy the hypotheses of Lemma 1.

Suppose that v(O) < 
n
([ [ 2 n )J + 2), and

t t .
j+1 3+1

(3.3) 5 e(t,2~~~j ) dt  5 [f (~~,2
n
(J + 1)) + 2 n

)d
t . t.

J 3

for 
~ 

= i,i + 1,i + 2,... ,k — 1, where k is some integer greater than i.

Then I > t
k
; v(t ,) < 2

n
(~ — 1) for j = i ,i + 1,...,k; and v(t) < X

n
(t) for

• all t in [O ,tk].

If (3.3) holds for all integers j  > i (in particular, if e(t ,y) < f(t,y) + 2 n 
~or

all t > 0 and y > 0), then I >  T , and v( t )  < x (t) for all t in (‘1,1,,).

Proof .

First suppose that (3.2) does have at least one noriextendable solution

x : (0,1 ) + R • Since x’(t) > 2 °, the numbers t. satisfyino x (t .) = 2~~~j  are
- n n + n — 2 - •  n 1

uniquely determined by this solution x~ ; and t
3 

increases to Tn as j  * . For

t < t < t . we have h (x (t)) = 2~ °j, hence x’(t) = f(~~~2
n
~ ) + 2 °. Therefore

i— i — n n  n

• (3~4) X (t) = 2~~(j — 1) + 5 [f(s,2 °j) + 2
_n

]dS (t . 1  < t < t.)

Since X (t~~) — x (t~~ 1) 
= 2~~ j  — 2

n(. — 1) 2—n , we must have

—9—
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2
-n 

= [f (S2
_n
~ ) + 2~

n
]dS (j = ~~~ + 1, i + 2,...) —

if a nonextendable solution X exists.

Formula (3.5) recursively determ ines t~ uniquely from t3_ 1 . Then (3.4) uniquely

determines Kn(t)• We easily verify that the function xn(t) constructed in this fashion

is a nonextendable solution of (3.2). This completes the proof of the first part of the

lemma.

Now suppose v, e, and k Satisfy the hypotheses stated in the lemma. Pa an

induction hypothesis, assume that t . < I and v(t .) < 2 n (i  — 1), for some i < k.

(This is cheer for i = i , since t~ = 0.) Then

t
i-fl 

t
i+1

5 e(s,v( t .) + 2 °)ds < 5 e(s,2 °j)ds
t . t .

j +i
< 5 ~~~~~~~~~~ + 1) )  + 2 ”) ds = 2 °

t-
3

by (3.3) and (3.5). Hence , by part (iii) of lemma 1, 1 > t
41, 

and

v (t) ( v(t .) + 2 ° < 2 °j = x (t.) < x (t)
j  — n j — n

fo r all t in [t~~ t~+1 J . This completes the induction , and the proof of Lemma 2.

Lemma 3.

Let f satisfy (1.2), and assume w > 0. Then there exists a maximal solution

x : (0,T )  + R
+ 

of (1.1). Moreover :

For each positive integer n, define X : [0 ,1) + as in Lemma 2. Then the

numbers I increase to I , and X (t) + x (t) for each t in [0,1 ), uniformly on

compact subsets of [0,1).

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _
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Proof.

We easily verify that the hypotheses of lemma 2 are satisfied by

e(t ,y) = f ( t ,h~~~1
(y ) )  + 2

n i  and v(t ) = x 1(t). By Lenuna 2 , then , T ÷i -
~~ 
T
n 

and

0 < x (t) < x ( t )  for all t in [0 ,1 ) .  Hence the numbers I increase to Some• — n+i — n n n

limit T
= (possibly ~°) ,  and xn( t )  decreases to a limit x (t) for every t in

(0 ,1), uniformly on compact subsets of [0 ,1).

Since ht, is an increasing function and y < h
+1

( y )  < h ( y ) < y + 2~~~, it follows

easily that hn(x n(t)) decreases to x (t). For almost every s in [0 ,T), f(s,.) is

increasing and right—continuous, hence f(S
~
hn(X n(S))) decreases to f(s,x (s)) . lake

lim its in the equation

t
x (t) — x (r) = f [f(s ,h (x (s))) + 2 °]ds

By the Lebesgue Monotone convergence Theorem, we obtain

t
x (t) — x (r) = 5 f(s,x (s))ds

r

- 
• 

. Therefore x : [Q ,T )  + is a solution of (1.1).

Suppose I is not final for x .  Then 1
= < , and x (t) increases to some

finite limit M when t + T • Fix some C > 0 small enough so that

I

5 f (s ,M + 2)ds < 1
P

Since f (s ,h ( M  + 2)) + decreases to f(s,M + 2), for all n Sufficiently large we

have

H I

5 [f(s ,h (t.! + 2)) + 2 °]ds < 1
P -c

_ _ _  -
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Since T t I and x ~ x ,  for ~ll n sufficiently large we have I — z < I < T ar.~

x(T - C) < x (T — ~) + 1 < M + 1. Ihen

I

{f (S ,h [x T C) + i]) + 2 °}ds < 1 . 
. J -

Apply part (iii) of Lemma 1 with v(s) = x (s) and e(s,y) = f(s,h (y)) + 2~~~. We obtain

I < In’ 
a contradiction. So I is final for x , i.e. x is noriextendable.

To show the solution x is maximal, let v : [0,1) + be any other nonextendahhe

solution of (1.1). It follows easily from Lemma 2 that ‘I’ > I and v (t) < x (t) for— n — n

all t in [0.;). laking limits, we find that T > l~, and v(t) < xe(t) for all t in

[0,T~). This completes the proof of Lemma 3.

L_ 

-12-
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4. Proofs of theorems

Proof of Theorem I.

Most of Theorem I was proved in Lemma 3. It suffices to show every so1ut i~~’-

x : [0 ,T) + R
+ 
of (1.1) can he continued to a nonextendable solution. Suppose I Ic

final for x. Then I is finite, and x( t) increases to some f in ite lim it L wh en

• t + 1. By Lemma 3, there exists a maximal, hence nonexten dable , solution o f

x ’ ( t )  = f(t ,x(t)) (1< t <

x(I) = L

This completes the proof of Theorem I.

Proof of Theorem II.

(2.3) implies (2.4):

Trivial.

(2.4) implies (2.3):

Fix some q in [0,1) and some c > 0. It suffices to show that

(4.1) v(t) - v (q) ( (1 + C) 5 f(s ,v(s ) ) d s
q

for all t in [q, T) (for then let c + 0). Let S = Ct C [q,T): (4.1) holds}. Ther

q £ S.
t

Fix any r c S. Then v(t) — v (r) < (1 + c) 5 f ( s ,v(s))ds for all t greater
r

than r and sufficiently close to r, by (2.1). For any such t,

v(t) — v (q) = [v(t) — v(r)] + [v(r) — v(q))

• t r
< (1+c) 5 f(s,v(s))ds + (1+c) 5 f(s,v(s))ds = (l+C)

r q q

1 - and so t C S. Thus S is open on the right in [q,P). On the other hand , since

(1+c) 5 f (s ,v (s))ds is a continuous function of t and v (t) < him inf~~ v (r) , S ic
q

closed on the right in [q,T). Therefore S — [q,l). This completes the proof c~ (‘.3~~.

—13—
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(2.3) implies (2.7):

Immed iate f rom par t (iv) of Lemma 1.

(2.3) impl ies (2.5):

~~ By a tr ans lation of p, we may assume without loss of generality that p = 0. The

f u n c tion x : (0 ,T ) + R of Theorem II is the same as the function x : [0,1 ) + R of

w = v(0). By Letmna 2, T <  I and x >  v. Hence, by L:tma 3, T~,< ~

(2.5) impl ies (2.6):

Fix t in [0,1). By hypothesis , M a sup{v(s) : 0 < s < t} is finite. Since

f(.,M + 1) is integrabhe on [0,tJ , there is some u > 0 such that

b

f f(s,M + 1)ds < 1 if 0 < a < b < t and b — a <
a

It follows by Lemma 1, part (iii), that

if 0 < a < b < t , b - a < ~~i, then

T > b and x (r) < v(a) + 5 f(s ,v ( a ) + 1)ds

( 4 . 2 )  a

for all r in (a,bJ , hence in particular

v(b) — v( a )  < x (b) - v(a) < f f(s,M + 1)ds

Let any partition

4.3) 0 t  < t  < t  < ...<t t
0 1 2 m

-• f r ~~,t be given. thoose a refinement

0 = s  < s < s  < ...<S — t
• 0 1 2

such that isax (s — 5 . C < i. We havei i  i—i

v (s )  — v(s
0
) = (v( s. )  — v (s

1 1
)]

= 

j~ 1 
tv (s1

) — v(s~~ 1
)] — 

~ 

[v( s
1
) — v(s~_ 1 ) ]

w~ierq = max{w,0}, [w) = max{—w ,0}  . Hence

— 1 4 —

- 

• 
L- -~~~~~~J _ ~~~~-~~~~ —
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m n
v (t . )  — v(t . (I ~ Iv (s.) — v(s , )l

3 j—1 — 
1=1

n
+ v —

= [v (s.) — v ( 5 .
1

) )  + [v(s .) — v (s 1 )]
i=1 i=1

= 2 L
r 

- v (s 
1
fl + v(s

0
) - v(:)

< 2 
~ 5 f ( s ,M + l ) ds + N + 0 = 2 5 f (s,M + 1 )ds + M

i=1 5
i—l 

0

The right side is independent of the choice of partition (4.3). This proves (2.6).

(2.5) and (2.6) together imply (2.3):

Fix t and r, 0 < r < t < I. Py hypothesis , M = suptv(s) : 0 < S < t} is

finite. Choose u > 0 to satisfy (4.2).

By (2.6), v has at most countably many discontinuities in tO ,t ] ,  each

discontinuity is a jum p , and the magnitudes of the jumps are summable. Hence for each

— positive integer n , the set

• A = Cs C (r ,t) : v(s+) — v(s)I > 2
n 

or v(s—) — v(s)I >

is finite . Th: sets fo~~ an increasing se~~ence , and v is continuous at every

• S C (r,t)\U An=1 n

The sets

= Cr +2 °k(t — r): 1< = 0 1 2 2n}

also form an increasing sequence of f in ite sets ; hence so do the sets C
n = A~ U Bn~

Temporarily fix any integer n > hog
2
((t — r)/p). Suppose C~ consists of the points

(4.4) C : r s  < s < s  < ...<S t .mm 0 1 2 m

Then S . — 5 . 2
n
(~~~~) < ~~ so

1 1—1 —

1 > s .5i—1

by (4.2). Therefore we can define a function w
n 

: [r ,tl + R by taking

w(s .) v (s ) for 0 < i < m ,n 1 i — —

— w (5) = x (s) for s < s < S., 1 < 1 inn s
~
_
~ 

i—i — 1 — —

— 1 5 —  

- - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~L. _

~~~~~~~~~~~ .



Hence

v(s) ( w (s) ( N + 1 for all s in ~r ,t , and

S S

w Cs) = v(s . ) + 5 f(q,x ( a f l d a  < v (s ) + f ( o ,5’ +n i — i  S . — i—i(4.5) s . 1—1 s .i—i i—i

for all s in ts . ,s .), and
i—i 1

m m
v(t) — v(r) = ~ [v(s .)  — v(s. C] < ~ ~x (s )  — v(s , )‘

• 1—1 — 
• s . 1 1—1

1 = 1  1=1 i — i
(4.6) S .

= 

1!, 
~i:i 

f ( s ,x (s))ds = f f( ())d

Now suppose n > log
2
((t — r)/ji) + 1. For any 5

i—1 
and in Cn~ 

bo th w,.

and Wn_l are def ined on 
~~~~~~~~~ 

as maximal solutions of w’(s) = f(s,w (s)), wi th

initial values w(s
i i

) and w
1
(S . 1 ), respectively. But

w (s. ) = v(s . ) < w (s. ) since s C C  • Hence w < w on rs • ,S . ). T~isn i—i i—i — n—i i~~i i—i n n — n—i i—i

holds for 1 < i < m; so w < w on [r ,t]. Thus
— — n — n— i

(4.7) w > w > w > ... > V on [r ,t]n —  n-fl — n+2 — —

and wn(s) = v(s) for all s in Cn •

We wish to show wn (S) decreases to v(s) for every s in r r ,t). This is clear

for every s in U
1 
C .  Fix any s in [r, t]\U 1 

C .  Then v(.) is continuous at

a. Iemnporarily fix some large n, and let Cn be as in (4.4). Choose i so that

S~~~1 
< ~ < We shall apply inequality (4.5). P.s n + 

‘ 5
~~

_ , + s, hen ce

v(s
~~~1

) ÷ v(s) and f(q,M + 1)dq ÷ 0. Taking limits in (4.5), we obtain
i—i

him SU~ ,w (s) < v(s). In view of (4.7), then , wn(s) decreases to v(s).

For almost every s in [r ,t], f ( s ,.) is increasing and right—contin uous , so

f(s,w~(s)) decreases to f(s,v(s)). Also f(s,w (s)) < f(s,M + 1), which is an

integrable function of s. By Lebesque ’s Dominated Convergence Theorem , from (4.~~ we

obtain

L 
_  
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t
v(t) — v (r) ( 

5 f (~~ ,v ( s ) ) d s

This proves (2.3), and completes the proof of Theorem II. •

Proof of Theorem III.

• (2.11) implies (2.10):

Trivial .

(2.9) implies (2.11):

Without loss of generality let p 0. Let f = f , w = w .  Fix any posi t ive

in teger n , and def ine  x~~. i , and {t .)  as in Lenumma 2. Fix any integer ~ > i. T~ er

for all a C A sufficiently large , W < 2 
n
([r2

nw ) ]  + 2 ) (since h im sup W < w )  a-~~

j+1

~ 

f
a
(t,2

n
j)~~t < f [f(~~~2

n
(~ + 1 ) )  + 2 n

]d~

C i = i,i + 1 ,i + 2,...,k — 1), by (2.9). Hence , by lemma 2, 1 > t
k
, and x < x or.

[0
~
tk]~ 

Therefore him inf I > t.~, and him sup x (t) < x (t) for all t in

Let k ÷ = and then let n + ; this proves lim inf I > T and him sup x
a
(t) < x

for all t in [0 , 1).

(2.10) implies (2.9):
t t

Suppose him sup 5 
~~~~~~~~~ 

> 5 f (s ,y)ds for some y > 0 and t > r > C.
t r

5 f (s,.)ds is right—continuous, we have in fact
r

him SUP f f
a
(51

~~
d5 > f (s,y + Cids

for some c > 0. Partition the interval [r ,t3 into n pieces r r ,t~~ of lencm t”

(t — r)/n. For n large enough , all of the pieces must satisfy

(4. 8) f f (s,y + C)ds ( C

- 

~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _



~n the other hand , at least one of the pieces must satisfy

(4.9) him sup 1 f
a
(5
~~~

d5 > f f(s ,y + C)dS

S~ x th is choice of r ’ and t ’ . Let p r ’ and w = w =  y, and define maximal

sol ut ions x an d x
= 

and final times T
a 

and 1
= 

as in (2.0). By hypothesis (2.10) we

have lim inf  T > I and
a —

( 4 . 1 0 )  him sup xa
( s )  < x ,(s) for every s in [r ’,I )

Si nce x ( r )  = y, we can use (4.0) and part (iii) of lemma 1 to show that 1 t’ and

that

(4.11) x (t’) < y + 5 ç(s,y + c)ds

Then for all a C A sufficiently large we have I > t’ and

t ’
x (t) = x Cr ’) + 5 f (s,x ( s ) ) d s

a a a a
r

12)
t• t’

> x (r~ ) + 1
, 

f
a 

,x ( r ’ l5 = y + 
~T, ~~~~~~~~~

~y~nhmne (4 . 1 1)  (with s = t ’)  and (4.9), (4.11), (4.12); this gives us a contradiction.

So (2.10) implies (2.9). This completes the proof of Theorem III.
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